z Expansion and Nucleon Vector Form Factors

GENIE z Expansion Workshop Fermilab, Batavia, IL

Gabriel Lee

Technion – Israel Institute of Technology ongoing work with J. Arrington, R. Hill, Z. Ye

Sep 1, 2016

1/9

Form Factors and ep Scattering

▶ Mott cross-section for scattering of a relativistic electron off a recoiling point-like nucleus is

$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = \frac{Z^{2}\alpha^{2}}{4E^{2}\sin^{4}\frac{\theta}{2}}\cos^{2}\frac{\theta}{2}\frac{E'}{E}.$$

The Rosenbluth formula generalizes the above,

$$\left(\frac{d\sigma}{d\Omega}\right)_R = \left(\frac{d\sigma}{d\Omega}\right)_M \frac{1}{1+\tau} \Big[G_E^2 + \frac{\tau}{\epsilon} G_M^2\Big], \; \tau = \frac{-q^2}{4M^2}, \; \epsilon = \frac{1}{1+2(1+\tau)\tan^2\frac{\theta}{2}}.$$

▶ The Sachs form factors $G_E(q^2)$, $G_M(q^2)$ account for the finite size of the nucleus. In terms of the standard Dirac (F_1) and Pauli (F_2) form factors,

 \blacktriangleright The form factors are normalized at $q^2=0$ to the charge and anomalous magnetic moments, e.g., for the proton,

$$G_E^p(0) = 1, G_M^p(0) = \mu_p.$$

▶ Quantities like the charge radius and the form factor curvature are defined by derivatives of G evaluated at $q^2 = 0$, e.g.,

$$\langle r^2 \rangle \equiv \frac{6}{G(0)} \frac{\partial G}{\partial q^2} \Big|_{q^2=0} \, . \label{eq:constraint}$$

◆□▶◆□▶◆豆▶◆豆▶ 夏目 か9.0°

Earlier Ansäntze for G_E, G_M

$$\left(\frac{d\sigma}{d\Omega}\right)_R = \left(\frac{d\sigma}{d\Omega}\right)_M \frac{1}{1+\tau} \Big[G_E^2 + \frac{\tau}{\epsilon} G_M^2\Big]$$

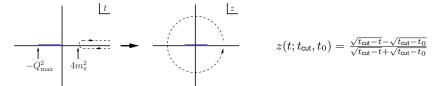
Previous analyses used simple functional forms for G_E, G_M , with expansions truncated at some finite k_{max} :

$$\begin{split} G_{\text{poly}}(q^2) &= \sum_{k=0}^{k_{\text{max}}} a_k(q^2)^k \;, \qquad \text{polynomials, Simon et al. (1980), Rosenfelder (2000)} \\ G_{\text{invpoly}}(q^2) &= \frac{1}{\sum_{k=0}^{k_{\text{max}}} a_k(q^2)^k} \;, \qquad \text{inverse polynomials, Arrington (2003)} \\ G_{\text{cf}}(q^2) &= \frac{1}{a_0 + a_1 \frac{q^2}{1 + a_2 \frac{q^2}{1 + a_2}}} \;, \qquad \text{continued fractions, Sick (2003)} \end{split}$$

- ▶ Hill & Paz (2010) showed that the above functional forms exhibit pathological behaviour with increasing k_{max} .
- ▶ Other, more complicated functional forms exist, see, e.g., Bernauer et al. (2014).

The Bounded z Expansion

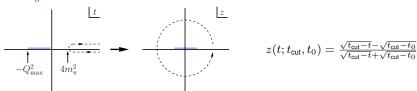
- For the proton, QCD constrains the form factors to be analytic in $t\equiv q^2\equiv -Q^2$ outside of a time-like cut beginning at $t_{\rm cut}=4m_\pi^2$, the two-pion production threshold. Clearly this presents an issue with convergence for expansions in the variable q^2 .
- lacktriangle Using a conformal map, we obtain a true small-expansion variable z for the physical region:



$$G_E = \sum_{k=0}^{k_{\max}} a_k [z(q^2)]^k \,, \quad G_M = \sum_{k=0}^{k_{\max}} b_k [z(q^2)]^k \,.$$

- ▶ The physical kinematic region of scattering experiments lies on the negative real line. For a set of data with a maximum momentum transfer Q^2_{max} , this is represented by the blue line.
- The conformal map has a parameter t_0 , which is the point in t plane that is mapped to $z(t_0)=0$.
- ▶ By including other data, such as from $\pi\pi \to N\bar{N}$ or eN scattering, it is possible to move the $t_{\rm cut}$ to larger values, improving the convergence of the expansion.

More on t_0



- ▶ Since the conformal mapping is an analytic function, on the closed set $t \in [-Q_{\text{max}}^2, 0]$, it attains a maximum $|z_{\text{max}}|$ at one of the endpoints t = 0 or $t = -Q_{\text{max}}^2$.
- We can find an optimal choice t_0^{opt} to minimize this value $|z_{\text{max}}|$,

$$t_0^{\text{opt}}(Q_{\text{max}}^2) = t_{\text{cut}} \left(1 - \sqrt{1 + Q_{\text{max}}^2 / t_{\text{cut}}} \right) \quad \Rightarrow \quad |z|_{\text{max}}^{\text{opt}} = \frac{\left(1 + Q_{\text{max}}^2 / t_{\text{cut}} \right)^{\frac{1}{4}} - 1}{\left(1 + Q_{\text{max}}^2 / t_{\text{cut}} \right)^{\frac{1}{4}} + 1} \,.$$

▶ Choosing an appropriate t_0 can make a big difference on the required k_{max} for convergence; below n_{min} is such that $|z|^{n_{\text{min}}} < 0.01$.

$Q^2_{ m max}$ [GeV 2]	$t_0\: [GeV^2]$	$ z _{\max}$	n_{\min}
1	0	0.58	8.3
1	$t_0^{\text{opt}}(1\text{GeV}^2) = -0.21$	0.32	4.0
3	0	0.72	14
3	$t_0^{\text{opt}}(3\text{GeV}^2) = -0.41$	0.43	5.4

Sum Rules from Large Q^2 Behaviour

 $\,\blacktriangleright\,$ QCD also demands that the form factor fall off faster than $1/Q^4$ up to logs as $Q^2\to\infty$ (dipole-like behaviour),

$$Q^n G(-Q^2)\Big|_{Q^2 \to \infty} \to 0 \quad \Rightarrow \quad \frac{d^n G}{dz^n}\Big|_{z \to 1} \to 0, \quad n = 0, 1, 2, 3,$$

 $\begin{tabular}{ll} \hline \textbf{For a form factor employing the z expansion truncated at some $k_{\rm max}$, we can enforce this by implementing four sum rules, \\ \hline \begin{tabular}{ll} Lee, Arrington, Hill (2015) \\ \hline \end{tabular}$

$$\sum_{k=1}^{k_{\text{max}}} k(k-1) \cdots (k-n+1) a_k = 0, \quad n = 0, 1, 2, 3.$$

In practice, we constrain the 4 highest-order coefficients in a fit using these sum rules by solving a system of equations derived from these sum rules.

FF Uncertainties

▶ The value of the form factor at some fixed Q^2 is a *linear* function of the coefficients, which are the parameters in the fit:

$$G(Q^2; \pmb{a}) = \sum_{k=0}^{k_{\rm max}} a_k z^k(Q^2) = g + \sum_{k=1}^{k_{\rm max}} a_k (z^k - z_0^k) \,,$$

where we used the normalization constraint to re-express the form factor in the second equality, with $z_0=z(Q^2=0;t_0)$ and, e.g., for the proton, $g=(1,\mu_p)$ for the (electric, magnetic) form factors.

To obtain the uncertainty, we note that

$$\frac{dG}{da_k}(Q^2; \boldsymbol{a}) = z^k - z_0^k;$$

if C_{kl} is the covariance matrix for the coefficients a_k , we have

$$\delta G(Q^2) = \left[\sum_{k,l=1}^{k_{\text{max}}} C_{kl} (z^k - z_0^k) (z^l - z_0^l) \right]^{1/2}.$$

▶ If a fit includes sum rules, there are straightforward complications to the above derivations.

Datasets

Proton: three separate datasets for the available elastic ep-scattering data.

- "Mainz" (cross sections): high-statistics dataset with $Q^2 < 1.0 \, {\rm GeV}^2$. Originally 1422 data points in the full dataset released by the A1 collaboration [Bernauer et al. (2014)]. This was rebinned to 658 points with modified uncertainties in Lee et al. (2015).
- "world" (cross sections): compilation of datasets from other experiments from 1966–2005, 569 data points with $Q^2 < 35 \, {\rm GeV^2}$. Update of dataset used in Arrington et al. (2003, 2007).
- "pol" (FF ratios): 66 polarization measurements with $Q^2 < 8.5 \, {\rm GeV}^2$, see, e.g., Arrington et al. (2003, 2007), Zhan et al. (2011).

Neutron: the data is split into measurements for G_E^n and G_M^n separately.

- G_E^n : 37 measurements $Q^2 < 3.4 \,\mathrm{GeV}^2$.
- G_M^n : 33 measurements $Q^2 < 10 \,\mathrm{GeV^2}$.

Ongoing Work

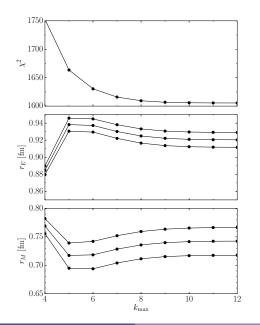
Proton: a combined fit of the three datasets to provide parameterizations and tabulations (including uncertainties) of G_E^p, G_E^n with:

- correlated systematic parameters for the Mainz data floating in the fit,
- implementation of sum rules enforcing dipole-like behaviour of G_E, G_M at high- Q^2 ,
- updated application of radiative corrections, e.g., high-Q² finite two-photon exchange corrections,
- ▶ focus on two Q^2 ranges, i.e., 1–3 ${\rm GeV}^2$ and the entire range of available data (up to $35\,{\rm GeV}^2$).

Neutron:

- including this data in a combined fit allows us to separate the isoscalar and isovector channels, $G_E^{\binom{0}{1}}=G_E^p\pm G_E^n$, which allows us to move $t_{\rm cut}$ for $G_E^{(0)}$ to the three-pion production threshold,
- updated determination of neutron electric and magnetic radii.

k_{max} Dependence



- ► We can also test the dependence of the fit results on the choice of k_{max}.
- The fit has converged for $k_{\text{max}} = 10$.
- ▶ We use a default of $k_{\text{max}} = 12$ in fits: for $Q_{\text{max}}^2 = 1.0 \, \text{GeV}^2$ (statistics-only errors),

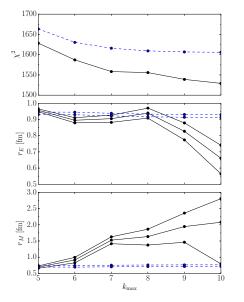
$$r_E = 0.920(9) \; \mathrm{fm},$$

$$r_{M}=0.743(25) \ {\rm fm}.$$

Unbounded *z* Expansion Fits

Fits using unbounded z expansion performed by Lorenz et al.

Eur. Phys. J. A48, 151; Phys. Lett. B737, 57



▶ Sum rules such as $(t_0 = 0)$

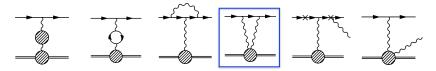
$$G_E(q^2 = 0) = \sum_{k=0}^{k_{\text{max}}} a_k = 1$$

tell us $a_k \to 0$ as the k becomes large.

- ► The Sachs form factors are also known to fall off as Q⁴ up to logs for large Q² (dipole-like behaviour at large Q²).
- ▶ To test enlarging the bound, we took $|a_k|_{\max} = |b_k|_{\max}/\mu_p = 10$, and found $r_E = 0.916(11)$ fm, $r_M = 0.752(34)$ fm.
- ► However, as $|a_k|_{\max} \to \infty$, $|a_k|$ for large k takes on unreasonably large values, in conflict with QCD.

One-Loop $\mathcal{O}(\alpha)$ Radiative Corrections

The proton form factors are defined from the matrix element of one-photon exchange. A consistent definition of the form factors is required to compare extracted radii.



- We know how to compute results for the electron vertex correction and the leptonic contributions to the vacuum polarization in perturbation theory.
- From previous dispersive analyses of $e^+e^- \to {
 m hadrons}$ data, we expect the correction from hadronic vacuum polarization to be smaller than current achieved precision in scattering experiments.
- For soft bremsstrahlung and two-photon exchange (TPE), there are two conventions for subtraction of infrared divergences.

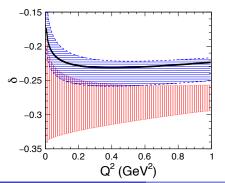
 Tsai (1961), Maximon & Tjon (2000)
- ▶ At present, we cannot calculate the remainder of the TPE contribution from first principles.

12/9

EFT Analysis of Large Logs

A systematic analysis of the radiative corrections using effective field theory is performed by R. Hill in 1605.02613, identifying the sources of all large logarithms in the limit $Q^2\gg m^2$; e.g., there are implicit conventions of $\mu^2=M^2$ for vertex corrections vs. $\mu^2=Q^2$ for Maximon-Tjon TPE corrections.

- ▶ Heavy particle: $\Delta E \ll E \sim Q \sim M$. Neglected: $\alpha^2 \log^2(M^2/(\Delta E)^2)$ small.
- ▶ Relativistic particle: $m, \Delta E \ll E, Q \ll M$. Neglected: $\alpha^2 \log^3(Q^2/m^2) \sim \mathcal{O}(\alpha^{1/2})$.
- ightharpoonup 0.5-1% discrepancies between the NLO resummed EFT prediction and the phenomenological analysis, which is greater than the assumed <0.5% systematic error of the A1 analysis.



- Leading log resummation.
- Next-to-leading log resummation.
- Black: complete next-to-leading order resummation.